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[1] Techniques are presented for efficiently evaluating quasi-linear diffusion coefficients
for whistler mode waves propagating according to the full cold plasma index of refraction.
In particular, the density ratio w,./§2, can be small, which favors energy diffusion. This
generalizes an approach, previously used for high-density hiss and electromagnetic ion
cyclotron waves, of identifying (and omitting) ranges of wavenormal angle 6 that are
incompatible with cyclotron resonant frequencies w occurring between sharp cutoffs of the
modeled wave frequency spectrum. This requires a detailed analysis of the maximum
and minimum values of the refractive index as a function of w and 6, as has previously
been performed in the high-density approximation. Sample calculations show the effect of
low-density ratio on the pitch angle and energy diffusion coefficients modeling the
effect of chorus waves on radiation belt electrons. The high-density approximation turns
out to be quite robust, especially when the upper frequency cutoff is small compared with

{2.. The techniques greatly reduce the amount of computation needed for a sample
calculation, while taking into account all resonant harmonic numbers 7 up to +co.

Citation: Albert, J. M. (2005), Evaluation of quasi-linear diffusion coefficients for whistler mode waves in a plasma with arbitrary
density ratio, J. Geophys. Res., 110, A03218, doi:10.1029/2004JA010844.

1. Introduction

[2] Cyclotron-resonant wave-particle interactions are cur-
rently a leading candidate for understanding the behavior of
outer radiation belt electrons following magnetic storms. In
particular, Summers et al. [1998] proposed that energization
by dawnside whistler mode chorus waves, combined with
pitch angle scattering by duskside electromagnetic ion
cyclotron (EMIC) waves, might account for the observed
distributions of energetic electrons. By analyzing the path in
velocity space followed by an electron as it maintains
primary (n = —1) resonance with a field-aligned wave, it
was found that energy diffusion is favored by the low (~1)
values of the density ratio, w,./€., found outside
the plasmasphere. Horne et al. [2003] presented detailed
quasi-linear diffusion coefficients for low-density chorus
and confirmed the effectiveness of energy diffusion, al-
though these calculations were restricted to local (equatorial)
interactions. Horne et al. [2005] presented bounce-averaged
results, using realistic wave models. These calculations
were performed using two different approaches, one of
which is described by Glauert and Horne [2005] and one
of which is described here.

[3] Whistler mode chorus waves are observed to have
fine structure, including time-evolving frequencies [e.g.,
Santolik et al., 2003] and are associated with the strongly
nonlinear processes of particle phase bunching and phase
trapping (see the review by Sazhin and Hayakawa [1992)],
and also Smith and Nunn [1998), Albert [2000, 2001, 2002],
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and- Trakhtengerts et al. [2003]). However, it is assumed
here that quasi-linear theory is a meaningful description of
the long-term effect of fully formed waves on high-energy
particles [Summers et al., 1998; Summers and Ma, 2000;
Horne et al., 2003, 2005].

[4] Previous calculations of quasi-linear diffusion have
generally relied on the high-density approximation intro-
duced by Lyons [1974b], which leads to a greatly simplified
form of the index of refraction p. This allows a character-
ization of the resonant frequencies at each wavenormal
angle. Since the diffusion coefficients are infinite sums of
integrals over wavenormal angle 0 (and then bounce aver-
aged), it turns out to be possible, and extremely beneficial,
to restrict the range of the integrals over 6, This analysis has
been carried out for whistler mode plasmaspheric hiss
[Albert, 1999, hereinafter referred to as Paper 1] and for
EMIC waves [Albert, 2003, hereinafter referred to as Paper
2}, using the high-density approximation. This paper gen-
eralizes that approach to whistler mode waves with arbitrary
values of the density ratio.

[s] Section 2 presents the quasi-linear diffusion coeffi-
cients (pitch angle, momentum, and mixed), in a form that
generalizes the formulas of Lyons [1974b] to relativistic test
particles, general p, and arbitrary wavenormal angle and
frequency profiles. Section 3 expresses the cyclotron reso-
nance condition in terms of 1/u? (denoted by ¥) and a
function ¥ which contains all the dependence on parameters
of the test particle and briefly discusses the simple geomet-
ric behavior of ¥ as a function of w. Section 4 presents a
detailed algebraic, geometrical, and numerical analysis of
the full two-component cold plasma whistler-mode refrac-
tive index as a function of w. Particular attention is paid to
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the maximum and minimum values over a fixed w range and
how these values vary with 0. Several bounds and approx-
imations are discussed, including the high-density approx-
imation and a novel factorization. Section 5 identifies values
of § for which the maximum-to-minimum ranges of ¥{w)
and ¥(w) do not overlap; for such 8 values, there can be no
resonances. For large-enough harmonic number |n| there
will be no resonances for any 8 (since V. becomes less
than W), which cuts off the sum over n = —c0 to oo.
Additional tests based on the curvatures of V(w) and T{w)
are also developed. Finally, the dependence on latitude X is
considered, which leads to tests for \ ranges that have no
resonances for any 6 or n. In section 6 the preceding
analysis is used for n < 0 to isolate, or bracket, the resonant
frequencies which do exist so that they can be found quickly
and easily by a generic one-dimensional (1-D) root-finding
algorithm. This bracketing cannot always be done for # >0,
as explained, and alternative procedures are discussed.
Section 7 discusses the ratio D,,,/D,,, and explores why this
ratio should increase as w,/{2, decreases. Section 8 explores
the reliability of the high-density approximation for different
values of w,./§), and quantifies the gain in computational
efficiency made possible by the methods of this paper. A
summary is given in section 9.

2. Quasi-Linear Diffusion Coefficients
[6] The resonance condition for a diffusing particle is

Wy =W, Wy = 1%/, (1)
where 7 is an integer, s = 1 is the sign of the charge of the
particle, Q. = |g|B,/mc is its local nonrelativistic gyrofre-
quency, and v is its relativistic factor. The local pitch angle
of the particle is o, the index of refraction is p = kc/w, the
wavenormal angle is 6, and x will denote tan 6 throughout.

[7] The underlying physics of the diffusion coefficients
used here is identical to that of Lyons [1974b], except for
the extension to relativistic test particles (as briefly dis-
cussed by Lyons [1974a]). However, the frequency and
wavenormal angle profiles B*(w) and g,,(6) are kept general,
and we also postpone specifying the form of the refractive
index. The normalized diffusion kemnel for D, can be
written as

_wQ cos?h , (—sin® ot wn/w)’

= G,Ga, 2
T 2Bwly e U (@w/k) ] @

where G,(w) = (A(.\))Bz(u)/ f Bz(w’)dwl, and
Ga(w,0) = 8.(6) 3)

/ 2o u+wd/duw| sin @ ¢’ '

The normalization Aw is arbitrary, but it is convenient to use
a value characteristic of the width of B*(w). Then Dly, D,
and D, are given by

_D;'."‘,,= sina.cos o %=(?§;)2' @
DE —sifatw/w Dhe \Dag
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The normalized diffusion coefficients themselves are then
Ox
D=y [Dmtr= Y [0z,

Ow
where n ranges over 0o, and similarly for D, and D,
The term @, above is exactly as given in equation (9) of
Lyons [1974b], except that the arguments of the Bessel
functions therein become [rxtan cw — w,)/w,] (as in Paper 1)
to account for relativistic factors. The partial derivatives
above may be expressed in terms of derivatives of p(w, 8) by

(5)

dw,
res

1 @ = u
i <3ku), W — W o+ WO/ B (6)
and
Ox| _ pan/fw(w — wn)] — Ou/0w -
0] s wsinfcosd— Opjdx

The physical momentum diffusion coefficients D are equal to
the normalized quantities D multiplied by . (BZave/B2)(mv)>.
Finally, the bounce-averaged diffusion coefficients are
(Dayey) = | DaclBc/80)? dtity, (Do) = [ Dop(Bcro/ct)
dt/ty, and (D) = [ D,,dt/7y, where 7, is the bounce time.
These may be converted to integrals over latitude (as detailed
for Doy by Lyons et al. [1972] for a dipole field) or over
o (which may give better numerical behavior near the
mirror point). ,

Jx] It has become standard to model the power spectrum
B“(w) as proportional to a gaussian truncated at w;c and
wyc and the wavenormal angle profile g (x) as a gaussian
truncated at Xy, and X, Then, taking Aw equal to the
frequency width &w,

2. exp [—(w - w,,.)z/&uzl

G = T ertllwve = wm)/5a] T ertl(am — wrc)/oa]”

®)

and, with the high-density approximation for . (discussed
below),

M gg>’“exp[—(x—xm>2/x2w] "

Gz=(1+Mu:e I(w) )

where M = m/m; and {(w) (with Xpip = 0) is defined by
Lyons [1974b]. Nonrelativistically, these expressions all
reduce exactly to the formulas given there. The choice of
gaussians is not crucial, but the existence of lower and
upper frequency cutoffs, w;c and wyy, is essential for the
analysis. As in Papers ! and 2, the frequency cutoffs can be
used to derive restrictions on 8, which limit the range of the
x integration in equation (5). Thus by preidentifying ranges
of 8 for which w is outside the cutoffs, the amount of
computation needed to obtain D may be drastically reduced.

3. Resonance Condition

[s] Despite the formidable appearance of the expressions
for the diffusion coefficients, the only quantity not straight-
forward to evaluate is the resonant frequency w(8), which is
needed if D™ is integrated over O rather than w.

20f12
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V()

w/Q,

Figure 1. The function ¥{(w) at fixed 6, with n = 0 (dotted
curve), n = 1 (dashed curve), and n = —1 (solid curve), for
an electron with y = 4 and (vf/c*)cos” § = 0.5.

[10] The resonance condition, equation (1), may be writ-
ten as V{w, 8) = ¥(w, 8) where, similar to Papers 1 and 2,

1
v_w cos’acos?h, U=

V== wE
F (o) v

(10)

There is a loss of sign information in going from equation
(1) to V=W (via squaring), but it is assumed that for every
wave mode with positive k/k there is a mode of equal
amplitude with negative ky/k, so any solution of V' = ¥
corresponds to a solution of (1). Furthermore, the particle
distribution is assumed to be the same for v positive and vy
negative. This definition of ¥ differs slightly from that of
Lyons [1974b] and Papers 1 and 2, where it denoted the
high-density limit of [(w2/Q2)(1 + M)/MY/p2. This limit will
be discussed in the next section.

[t1] The geometric properties of F{(w) at fixed 6 were
established in Paper 1 and are shown in Figure 1. Forn =0,
V(w) has the constant value Vy = (vﬁ/c?')cos2 8. For w,
positive, ¥ always has positive curvature and is increasing
for w < w), and decreasing and bounded below by ¥; for w >
w,. For w, negative, V(W) is strictly increasing but bounded
above by ¥, and has positive curvature 8°¥/0uw® for w <
|w,}/2 and negative curvature for w > |w,|/2. The properties
of ¥ are discussed in the next section.

4. Index of Refraction

[12] The standard wave coefficients [Stix, 1962] for a cold
pure electron-proton plasma are

R —13&“‘2" 1+ M
Lf~ Qwl ~ M F(w/Q, - Qx‘/w), (11)
w? R+L R-L
o] — e _21Ts p_itzt
P=1-=2(1+M),S=——, D=—5—,

and the full expression for ¥ can be written as

= {(RL—PS) sin® § 4 2PS

+ 1/ (RL—PS)? sin* 8 + 4P2D? cos? e} J2PRL. (12)
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The choice = in equation (12) determines the labeling of the
wave as “R mode” (+) or “L mode” (-), but the
wavenormal surfaces exchange labels (or, as Stix [1962]
puts it, the labels exchange wavenormal surfaces) when
crossing P= 0 or D = 0. Here only waves with w <, and w
< wp, are considered, although w,, is allowed to be less than
Q.. Thus P is always negative, but D becomes negative for
w < §; (to lowest order in M). Therefore + is chosen to be
“+” when D > 0, for R-mode polarization, and “—" when
D < 0, for continuity. ,

[13] Usually, p? is treated as a function of 0 at fixed w;
here, Figure 2 shows ¥ versus w at fixed 8 (and fixed w,./$2,).
For each curve, it can be shown algebraically that 9¥/0w=0
at w = 0 so that the behavior of ¥ near zero is
determined by its curvature &¥/8w® there. For small
and moderate 0 this curvature is positive, so W(w) starts
out increasing but soon develops negative curvature,
eventually peaks (before reaching (2./2), and then
decreases to zero while retaining negative curvature. These
curves each have one internal maximum and no internal
minima. For large 8, ¥ starts out with with negative
curvature and declines monotonically ‘to zero, with no
internal maxima. The two classes of curves are separated
by the curve that has zero curvature at w = 0; this occurs for

2R R/

;2
sin” Ogep = ] ,
RR” Iw M + w2,/

(13)
=0 .
which gives 8 very close to 90° unless w,e/(2, ~ VM or less.
This is shown as the thick curve in Figures 2¢ and 2d and is
observed to cross zero at frequency ws, near (2, =
(S2.90)' (the geometric mean of 2, and ,).

[14] In general, ¥ reaches zero at the frequency given by
the expression tan? § = —P/S [Stix, 1962]. Using this to find
the ¥ curve that reaches zero right at {2,,, for which S=1,
yields

__-P| /G -M
1-Plg, W/

i 2
sin® Ogy

(14)

which is slightly less than sin® O5cp. This is shown by the
upper dashed curve in Figure 2d. The ¥ curve for sin” 0 =1
crosses zero at the lower hybrid resonance, w;y, where § =
0. Thus for w > wyy there is some maximum 0, the well-
known resonance cone angle, beyond which ¥ becomes
negative. This ¥ curve is the lower dashed curve in Figure 2d.
Since sin® 0, < sin® O, < 1, the separating curve crosses
Z€70 at Wep With Wy g < Weep < Qgm. (A good approximation to

wry is
M+ 2 /02
ng pe/ ze’
1+ wf,e/Qe

which is always less than (g,.) Qg, will also play an
important role below. ]

[15] As 6 increases, the ¥ curves generally shift left and
down, and wpeak and Y(wycax) are decreasing functions of 8
as confirmed by the falling curves in Figures 3a and 3b.
From a different point of view, if for some value of 0 the
slope 0¥/0w at fixed w is positive, the slope decreases to
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Figure 2. The function ¥(w) at fixed values of wﬁelﬂﬁ, for sin? § = 0.1 (top curves), 0.3, 0.5, 0.7, and
0.9 (bottom curves). The thick solid curves in Figures 2c and 2d are for ., and have zero curvature at
w = 0. Also shown in Figure 2d are the curves for g, which crosses zero at Q,, (upper dashed
curve), and for © = w/2, which crosses zero at w;y (lower dashed curve).

negative values as 0 increases. Extensive numerical tests -

show that once this slope becomes negative it stays negative
so that there is (at most) one value of  for which ¥ peaks at
any fixed w. ‘

[16] The rising curves in Figure 3a show the inflection
point frequency, where ¥ switches from positive curvature
to negative curvature. (The values Wpeak and wWinp are
undeﬂned when the curvature at w = 0 becomes zero, at
sin? Osep-) This wipg is usually an increasing function of 0,
although it must stay less than wpcay. In fact, Figure 3c
indicates that w;,q is always less than w;z.

4.1. High-Density Approximation

[17] In this and the next subsection, two alternate forms
of ¥ are presented which will be useful: the high-density
approximation and a novel factorization of ¥. In the high-
den51ty limit, w‘,,e/Q2 > w/Q,, simply dropping the leading

“1’s” in the definitions of R, L, and P leads to the much
simpler expression

sin’ 0

T 2

sin'f  W?
+\/—4-— QZ(1 - M)*cos 9}

Apart from the terms in front of the braces, is the form
introduced by Lyons [1974b] and used for quasi-linear
diffusion coefficient calculations almost exclusively ever
since.

HD=Q§ M 1 Ww?
wf, 1+ M

(15)

\IIHD

[18] Itis proved in Appendix A that ¥ < U2, Since &P
admits explicit analytical expressions for wpeax and
W(wpeak), it provides a useful upper bound on the true U,,.

4.2. A Factorization of ¥

[19] A different form of the expression for ¥ is suggested
by defining & = w/f,, and R = RG and similarly for L, P, §,
and D. Then the full ¥, with the same choices of + as for
equation (12), can be written as

(Dw) 1
‘I’= - = = —_—
R/IL D 2 D

aa oaay 2
RL—PS§\ sin*0 2
- = T+cose .
D 4p

The benefit of writing ¥ in this form is that for w > Q,, the
first ‘term in parentheses, denoted by ., is a strictly
increasing function of &, while the term in braces, denoted
by ¥_, is a strictly decreasing function of &. A proof is
outlined by Albert [2004]. The monotonicity of ¥, and ¥_
immediately gives the bounds

RL-P3sin?e §

(16)

¥ (wee)¥—(wuc) < U(w) < Uyfwue)P-(wic),  (17)
which will be close estimates if w; is close to wyc. The
lower bound is superfluous because the minimum value of
¥ is known to occur at either wy¢ or wyc, but the upper
bound is valuable when wy, lies between w, ¢ and wyq, as
discussed in section 3.

4 of 12




A03218

c‘)peuk/Qe’
1

ALBERT: DIFFUSION COEFFICIENTS FOR WHISTLER WAVES

winfl/ Qte

A03218

1.0000
0.1000}
0.0100¢

0.0010

\I,(.GP—“."‘)

0.0001 el ) i
0.0 0.2 04 06 0.8 1.0

1.00f e sin’g

z 10 N

3 - T T e

N 0.10F 7 . w/0,2=10

3 /e 3 0.1 —

-3
0.01 107 —-
0.0 0.2 0.4 0.6 0.8 1.0
sin%g

Figure 3. (a)The ﬁ'equenmes normalized by Q,, where ¥ has a peak (fallmg curves) or inflection pomt
(rising curves), for wpe/Q = 10 (dotted curves), 0.1 (solid curves), 10~3 (dashed curves), versus sin? 6.
(b) The values of ¥ at its peak. (c) The inflection frequencies normalized by wy;.

[20] It is worth noting that the heavy ion approximation
M = 0 reduces (RL — PS)/D to 1, which simplifies
equatlon glé) considerably. It is proved in Appendix A
that U™ < ¥ 5o that

(18)

Also, U0 and ¥™ 9 are monotonic increasing and
decreasing, respectively, for all frequencies 0 < w < min[€2,,
Wpel

IEZ]] Figure 4 shows the dependence of the three versions
of ¥ on w for 12 different combinations of w,/{2, and 6. In
each double plot, the entire range 0 < w < €2, is shown, as
well as an expanded view of the range 0 < w < Qg,,, The
heavy dashed line is the full, exact ¥. Also shown in each
plot is \IJHD as a solid line that always lies above the full ¥
and U™ a5 3 solid line that always lies below the full ¥
but is in several cases almost indistinguishable from it. The
vertical scale is indicated by listing the peak value of ¥/,
this can be greater than 1, but the full expression for ¥ is
always less than 1,

PM=0) o < D

5. Eliminating Ranges of 0

[22] If the integrals in equation (5) are performed over w,
the resonance condmon gives an easily solved quadratic
equation for cos” 8 as a function of w. Integrating over x =
tan 0 instead involves the more difficult problem of solving
for w(B) but offers greatly improved efficiency by cutting
down the required range of integration or, in favorable
cases, eliminating 8 integrals altogether. As in Papers 1
and 2, the strategy is to circumvent the complicated alge-

braic dependence of ¥ on w by considering ¥ geometri-
cally, using the properties discussed in the previous section,
while exploiting the relatively simple algebraic dependence
of ¥ on 6.

5.1. Overlap of Maximum and Minimum Values

[23] The fundamental geometric idea is that at fixed 0,
V(w) and ¥(w) cannot intersect if Vis larger than ¥ or if V'is
smaller than ¥ for all w between w;¢ and wye. (The latter
case is illustrated in Figure 5a.) Such 8 values yield no
resonances and can be skipped in the integration for the
diffusion coefficients. The prescription is thus

skip 0 Viax < Wppin OF Vigin > Pnax- (19)
Once the values of w that maximize and minimize Vand ¥
between w; ¢ and wy¢ are determined for fixed 6, writing out
the conditions in (19) dlrectly gives quadratic mequalltles of
the form A cos* § + B cos® 8 + C > 0. As in Paper 1
(Appendix Al) or Paper 2 (Appendix B), these inequalities
are readily solved for ranges of 6 which may be skipped.
51.1. Vi and Ve

[24] The geometric behavior of ¥, shown in Figure 1,
makes it easy to determine Vi, and V.« (just as in Papers
1 and 2). For w, = 0, they are both just ¥,. For w, <0, Viin
is Mwyc) and Vmax is M(wye). For 0 < w, < wre, Vmin 1S
Vwyc) and Vimax is Vwec), while for wye < Wy, Viin is
Wwre) and Viax is Mwye). If we <w, < wuc, Vinin is the
smaller of {w.c) and Vwye) and Vpa is infinite.

5.1.2. The Condition V,.< ¥ ..

[25] Since ¥yyin is the smaller of ¥(w.c) and T{wyc), the

condition Fpax < Wi is satisfied by 0 ranges where both
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cope/Qe=O.1 wpe/Qe= 1.0 wpe/ﬂe=3.0
[+]
0
) Yoeak= Y oeak™ Vo=
24.8 0.25 2.76x1072
[+
Tg]
h
) Voo ¥ peok Y ook ™=
12.5 0.13 1.39x1072
/
Q
(@]
T
E ¥ pear= ¥ peok= ¥peoc=
0.78 7.81x1073 8.68x107*
/ Y _( N / -.\\
o \ N
[s0]
°|C|) || \‘
> |, Voo™ Vo= L
X 6.37x1072 6.37x10™* 7.08x1078
0 Q. 0./2 Q0 Q.. Q./2 Q,.0 Q. 0,/2 Q,

Figure 4. The function ¥(w) (dashed curves), for different values of 0 and w,,/$2.. Also shown are the
high density approximation (upper solid curves) and the M = 0 approximation (lower solid curves). For
better resolution, the ranges 0 to Q,,, and 0 to Q, are shown separately. The vertical scale goes from 0 to
the peak value of ¥/P, which is indicated in each figure. For w,/Q, as low as 1, the high-density

approximation is quite good for small w/Q), unless

Vinax < ¥(wze) and Viax < Y(wye). Note that for w, <0 or
Wa > Wyes Vimax i V(wye) and decreases with increasing |n|.
Therefore for |n| large enough, Vi will always be less
than W_;,, which gives a systematic means of limiting the
doubly infinite number of » values in the sum of
equation (5).

5.1.3. The Condition V,;;, > W0

[26] This condition is more complicated, because U,
depends on 0. From Figure 3a, wpeax decreases as 0 increases
and there is a unique value 6 = O ¢ (found numerically) for
which ¥ peaks at wyc, 50 ¥max = Y(wye) for 8 < Ope.
Similarly, there is a larger value ©,¢ for which ¥ peaks at
wr e, 80 Wiy = U(w, o) for 8 > ©,¢. (Thus wy ¢ < wyc but
O > Oyc.) For either 6 < Oy or 6 > O, the condition
Viin > Wmax specifies quadratics for cos? .

[27]1 For 6 between ©y¢ and O, the maximum of ¥
occurs somewhere between wy and w;c, and no simple,
exact_characterization has been found. However, any func-
tion W which is an upper bound of ¥ may be used, since
then Viyin > Wy guarantees Vi, > U One immediate
(over)estimate is W(wyc, Ouc), since the peak value of ¥
decreases as 0 increases (see Figure 3b). Note that for § =
Orc, Ypeak is actually Yi(wie) ¥_(wre, OLc), while the

0 is very large.

estimate just given is V.(wyc) ¥_(wye, Ouc) and the upper
bound given in equation (17) is ¥ (wyc)¥_(wre, OLo).
Neither estimate dominates the other, so both should be
used to narrow down the retained 8 ranges. The upper bound
UHP can be used as well.

5.2. Curvature

[28] The conditions in equation (19), based on the max-
imum and minimum values of of ¥{(w) and ¥(w), may be
augmented by geometrically simple ideas involving their
curvature. For w > wyy, ¥ has negative curvature (concave
downward) and ¥ has positive curvature (concave upward)
on either side of w, (for w, positive) or for w < |w,|/2 (for w,
negative). Now suppose H{wrc) < P(wre) and Hlwye) <
W(wye) for some range of O, as illustrated in Figure Sb.
Since V(w) and ¥(w) “curve away from each other,” there
can be no intersections between w;- and wye. The
corresponding O ranges can be found from quadratics as
above.

[29] Similar considerations apply to the combination ¥V
concave downward, ¥ concave upward, with P{w;c) >
W(w,e) and Hwye) > ¥(wye). However, this requires both
Wy, <0, w> |w,|/2 (for the ¥ curvature) and w < wy (for the
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Figure 5. V(w) and ¥(w) with wge/Q,f =1andsin’6=0.1,
for a 0.5 MeV electron with n = —1. Also shown for
Hllustration are wyc = 0.18 and wye = 0.36. Maximum and
minimum values are shown by filled circles for ¥ and open
¢ircles for . (a) o= 85°. In this case, Vipax < Umin and there
is no resonance between the cutoffs. (b) a = 80°. Here, Vinax
is not less than W ., but the lack of resonance between the
cutoffs may be detected by the curvature argument of
section 5.2,

¥ curvature) so that y > |n|//2v/M or E > 10 MeV for
electrons.

5.3. Ranges of \

[30] The diffusion coefficients may be bounce averaged
according to (Do,00) = (1/75) [ DoalBog/d0)dsty, etc.,
and the integration along a field line may be carried out over
latitude \ [Lyons et al., 1972} or local pitch angle a. The
preceding approach may be extended to eliminate unneces-
sary .ranges of \ (or o), as follows. Consider ¥ and ¥ as
functions of & = w/(Y, so that the curve of V(&) at fixed 0 is
A-dependent only through o and (&) is \-dependent only
through w,/Q,. ¥ is a strictly decreasing function of X,
while the \ dependence of ¥ is more complicated but ¥ =
(wf,JQZ)\II strictly increases with w,./Q,., as shown in
Figure 6 and proved in Appendix A. Then the resonance
condition for a particle with equatorial pitch angle oy can be
rewritten slightly as V' = ¥, where

v

it

v Wf,eo [1 — hsin® oq (20)

- ] & cos? 0
col B Je-o)

and h(\) is Q. divided by its equatorial value €. The
bracketed combination, denoted by H(N\), strictly decreases
as X increases. Any X dependence of wp,, Wi, and wye will
be ignored for simplicity, though this can be generalized.
Then the normalized frequency cutoffs w;/Q. and wyc/Q2.
are bounded below and above, respectively, by & c =
WLC/ Qeo\max) and L:’UC = ‘-‘JUC/ Qeo\min)’ where >‘min and )‘max
are determined by both ¢y and the range of the waves.

[31] It is now straightforward to derive conditions for X
ranges which guarantee Vi < Wonin O Vigin > Winax S0 that
these ranges need not be included in the bounce averaging.
The maximum and minimum values must be found over
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ranges of 6, X\, and (. For simplicity, consider the case n =0,
for which V" is independent of &. An underestimate of ¥ in
is ¥V evaluated at 0,,.x and Ay, and an overestimate of
W, ax, denoted by ¥aax, is W evaluated at 8, and Apin and
maximized (numerically) over the range Gy ¢ to &yc. Thus
all \ values small enough that

(/) (wpea/Q0) H(N 005 bax > Buiax  (21)
will satisfy Vmin > Upmax. Similarly, all X values large
enough that

(v/ ) (wpen/ Q) H(N) 08 B < Fpary, (22)
where Wy is ¥ evaluated at 8, and A\pax and minimized
over Wy to Wyc, will satisfy Viax < Wmin- These X ranges
will have no resonances within the imposed 6 and w ranges
and cannot confribute to the bounce-averaged diffusion
coefficients. A further restriction on \ is found in section 7.

[32] The analysis may be extended to n # 0 to restrict X
ranges and, following section 5.1.2, to identify maximum
values of |n| beyond which there are no resonances at any
accessible \.

6. Finding Eligible Resonances

[33] After eliminating as much of the 6 and X integrals as
possible, the remaining 8 ranges must be integrated over
according to equation (5); to do this, the resonances that do
in fact lie between the cutoff frequencies must be found. A
straightforward approach is to derive a polynomial P(w)
from the resonance condition {Glauert and Horne, 2005],
which turns out to be 10th order in w. Instead, the geometric
analysis of Vand ¥ presented above may be used to try to
bracket the frequencies, which are then found with any one-
dimensional root finding algorithm [e.g., Press et al., 1992].
The simplest situation is where V(w) and ¥'(w) have

2 2
s ¥ (woe /Q)Y
T w,2/0,2=0.5
“ATT (@] (o)
020 I ‘/," \ 1 r wpe2/0e2=10‘0 1
; i
0.15} | :
j \
0.10}: l
I .
0.05 30K
:‘,/' AN ‘
0.00 L~ 10.0/ i
0.0 0.5 1.0 0.0° 0.5 1.0
w/Q, w/Q,

Figure 6. The functions (a) ¥ and (b) (w,fe/Q,f) U versus
w/Q, for different values of w2 /QZ, with 8 = 30°.
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opposite signs everywhere between the cutoffs, since then ¥
and ¥ can intersect at most once (and will do so only if
Mwre) — P(wre) and Mwye) — ¥(wyc) have opposite
signs). Otherwise, if ¥ and ¥ have the same signs but V"
and ¥" have opposite signs, then ' and ¥’ can have at most
one intersection, which separates possible intersections of ¥
with ¥. These cases are identified below.

6.1. Casen=20

{34] This is the simplest case because ¥ does not depend
on w. For 0 > O, U(w) is always decreasing so can
intersect ¥ only once. For § < 8, there will be at most
two intersections of ¥(w) with ¥] separated by wpeax. In fact,
Wpeak Will only lie between wy ¢ and wyc for Ope <8< Oy
For other § values, ¥(w) is always either increasing or
decreasing between the cutoffs and intersects V{(w) there
exactly once (the 8 values for which these intersections are
outside the cutoffs have already been eliminated).

6.2. Casew, >0

[351 There are several subcases. First, for > Bsep, W is
always decreasing, so it can intersect the rising branch of ¥
(where w < w,) at most once. An intersection with the
decreasing branch of ¥ would require w, < Qg so that y >
1/v/M or E > 20 MeV (for electrons), which is not
considered here.

[36] Otherwise, ¥ is either rising or has negative curva-
ture. The falling branch of ¥ has positive curvature, so it
could intersect ¥ at most twice, with the two intersections
separated by the single root of ¥ — &', Of course these roots
need only be sought between max(w,, w.c) and wyc.

[37] Since the rising branch of ¥ also has positive curva-
ture and starts out below ¥ at w = 0, it can intersect ¥ at
most once in the range w > wi;n where ¥ has negative
curvature. However, if the rising branch of ¥ intersects ¥ at
w < Wing, both curves are rising and have positive curvature
so multiple intersections must be considered. This is anal-
ogous to the situation of section 3.2.1 of Paper 1 and is
resolved the same way: V' is necessarily greater than ¥’ at
the first such intersection ws, and 8V/Ow increases faster
than linearly, so even the function (8V/dw)iw is increasing
with w. However, even when §¥/0w is increasing, (0¥/0w)/w
is decreasing (for all w, verified numerically). Thus ¥’
increases faster than ¥’ for w > ws, and this branch of ¥
cannot intersect ¥ again. In summary, there are at most three
intersections: one for the rising branch of ¥and two for the
falling branch.

6.3. Casew, <0

[38] As in section 3.3 of Paper 1, this is the most
problematic situation. Cases where either ¥'(w) and ¥'(w),
or else ¥ and ", have opposite signs everywhere between
the cutoffs can be handled as above. However, Vand ¥ both
have positive slope and positive curvature for w < min(winq,
lwa/2) (so that we < wiy), and they both have positive
slope and negative curvature for max (wing, jwel/2) < w <
Wpeak (SO that |n} <y cos 8,). If the preceding tests do not
rule out these possibilities, then no convenient argument is
known to bracket the roots of ¥ — ¥, as was done above for
w, > 0 or in section 3.3 of Paper 1.

[39] In principle, Sturm’s theorem gives the exact number
of real roots of the polynomial P(w) in any range (w, wy) in

terms of the number of alternations in sign of sequences of
polynomials derived from P(w) and evaluated at w, and w,
[e.g., Barbeau, 2003}. However, since the 11 coefficients of
P(w) depend on the parameters w,./€2,, 6, ¥, o, and n (as do
the coefficients of the derived polynomials), a general
characterization of these signs has not been attempted.
Descartes’ rule of signs and the theorem of Fourier and
Budan are similar but less definitive and almost as difficult
to apply.

[40] To proceed, one option is to revert to the polynomial
P(w) for w(B), accepting the inefficiency that the solutions
will not necessarily lie between w;¢ and wye. Also, the. .
(real) solutions must be checked to verify that they satisfy
the original equation ¥ = ¥. An alternative is to integrate
D™ over'w instead, finding 8(w) easily via a quadratic in
cos 8 as mentioned in section 5; this accepts the analogous
inefficiency that much of the w range will likely yield 0

values outside the range O, to 0. and sacrifices the

elimination of any O ranges that are possible for this
particular value of w,.

7. Dependence of D,, on Density Ratio

[21] The ratio of momentum diffusion to pitch angle
diffusion is controlled by equation (4), which may be
written as

V) sl 2 2
pp _ COSTQ W Wy

A = =
3 ) n - .
Dy siffo(w—Q,)° sin® &

(23)

This is the same dependence on w as in equation (10) for
W(w), with the similar result that A increases with increasing
w for 2, <0 or w <, and decreases with increasing w for
0<Q,<w.

[42] As w,. /), decreases, Figure 6a shows that ¥
increases for w < wypeax While the ¥ curve is unchanged, so
(from Figures 1 or 5a) the resonant frequency will increase
where §V/0w > 0 and vice versa. Thus for w, <0 orw <w,,
decreasing w,./{2, means typical (<wpeax) resonant w values
increase and A increases; for w > (2, decreasing w,./Q,
means typical resonant w values decrease and A increases.

[43] The only remaining case is 0 <w, <w < £2,,, but such
resonances do not seem to be possible. (Figure 5a shows two
resonances with 0 < w, <w, but the parameters are such that
w > §),,.) This statement is proved in Appendix B with the
restriction wy./C2, > 1/2. Extensive numerical tests (lookin%
for valid solutions to the quadratic for sin® 8 for over 10"
combinations of w, W,/ v, o, and n) indicate that it
holds for all values w,./Q, > 1077 (the lowest value tested).

{44] This finding can also be used to increase the effec-
tiveness of the methods of section 5.1, since for w, > 0, only
the parts of the interval (w;¢, wyc) outside (w,, 2,,) need be
considered. This finding could further be used to to elim-
inate some X ranges, as in section 5.3; for w, > 0, values of
X for which the interval (w; ¢, wye) lies within (w,, ©,) can
be omitted.

8. Results

[4s] Bounce-averaged results based on models of
CRRES wave data covering three different local time
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Figure 7. Local (equatorial) diffusion coefficients Dyq
and Dy, for a 1 MeV electron with w,./Q = 1.5, w,, = 0.35,
dw = 0.15, wre = 0.05, and wyc = 0.65 (after Horne et al.
[2003]). The solid curves are based on the full whistler
dispersion relation while the dashed curves use the high
density approximation.

sectors [Meredith et al., 2001] were presented by Horne et
al. [2005]. The diffusion coefficients were calculated by two
independent codes, one described by Glauert and Horne
[2005] and one based on the analysis presented above. In
this section, the reliability of the high-density approxima-
tion is explored. Also, the gain in computational efficiency
of the present methods is demonstrated.

8.1. Comparison to the High-Density Approximation
[46] Local diffusion coefficients were calculated for
1 MeV electrons with the same parameters as in the work
of Horne et al. [2003], namely B*(w), a gaussian of w/S2,
centered at w,, = 0.35 with halfwidth 8w = 0.15 and cutoffs
wze = 0.05 and wye = 0.65, and g.(0), a gaussian of tan 0

Daa/P’ Des/ P’

Figure 8. Diffusion coefficients for a 1 MeV electron as in
Figure 7 with W,/ = 1, W, = 0.4, & = 0.1, w =03, and
Wyc = 0.5.

Figure 9. Diffusion coefficients for a 1 MeV electron as in
Figure 7 with w,/Q, = 0.5, w, = 0.1, 8w =0.05, w ¢ = 0.05,
and wyc = 0.15.

centered at x,, = 0 with halfwidth x,, = tan 30° and cutoffs
Xmin = 0 and xpax = 1. For w,/Q, =10, 7.5, 5, and 2.5, the
values obtained for D, and D,, effectively duplicate
Figures 2 and 3 of Horne et al. [2003]. Agreement was
also obtained for w,/Q, = 1.5, although this required
lowering Xmax to slightly less than (i.e., 0.999 times) the
resonance cone value. Rather surprisingly, the values
obtained using the form of the diffusion coefficients based
on the high density approximation, computed as in Paper 1,
are essentially identical for w,/Q. > 1.5 and almost the
same for w,/S2, = 1.5 (which in the high density approx-
imation does not involve the resonance cone), as shown in
Figure 7. Figure 8 shows another comparison, with the
normalized frequency parameters changed to w,/Q. = 1, wy,
=04, & = 0.1, wyc = 0.3, and wy = 0.5 (this avoids the
resonance cone); the high-density approximation holds up
quite well except at low values of o. Figure 9 shows a
comparison with w,./Q, = 0.5, w,, = 0.1, & = 0.05, w.c =
0.05, and wyc = 0.15; here, the high-density approximation
is not reliable.

8.2. Computational Efficiency

[47] The amount of computer time needed to perform
these calculations varies greatly with the various physical
parameters, as well as numerical details. The test case used
here is the calculation of bounce-averaged diffusion rates
for 1 MeV electrons at L =4.5 in the night sector, with —5 <
n < 5, as presented by Horne et al. [2005]. (Models for the
other sectors considered in that paper approach the reso-
nance cone.) The CPU times reported are for totals for oy =
89°, 88°, ..., 5° (just outside the loss cone). To perform
numerical integrations, the code described here relied on
Romberg’s method, adapted from the implementation of
Press et al. [1992]. The calculations were performed as
J ax ¥, [ a&xD™, where x = tan 6. As a baseline, the
resonant frequencies w(B) were found by solving the
polynomial P(w) discussed in section 6.3, regardless of
n, without using any of the analysis above. As expected,
this way was the slowest. Then the techniques of sections

9 of 12




A03218

Table 1. CPU Times, s

P(w) V=1
E, MeV AllD Restricted All§ Restricted

n|<5

0.01 419.0 86.4 1474 54.5

0.03 366.2 91.0 119.6 SL3

0.1 364.7 164.7 127.3 86.2

0.3 389.8 263.4 166.5 140.5

1.0 508.3 421.0 235.1 204.0
In| <20

0.01 1248.5 86.4 385.2 54.5

0.03 1165.5 90.4 337.0 513

0.1 1144.3 165.5 340.6 87.3

0.3 1231.9 3317 - 386.7 1724

1.0 1551.3 834.5 540.1 396.3

5.1 and 5.2 were used to cut down the ranges of 8; over
the ranges not skipped, the resonances were again found
using P(w). This produced the same values (within a few
percent) in considerably less time. Next, solving P(w) for
the resonances was replaced by solving ¥ = ¥ but, as an
experiment, the integral over wavenormal angle was done
over the whole range 0 to xp.,. This also sped up the
calculations (sometimes by more, sometimes by less).
Finally, the techniques of restricting the 6 ranges and
solving ¥ = ¥ were combined, yielding the fastest method.
The timing results are shown in Table 1. Generally
speaking, lower-energy particles have fewer resonances,
so there is more opportunity to avoid nonresonant values
of 8, n, and \. For the same reason, the techniques will be
more effective the smaller the range of allowed resonan-
ces, wye 1o wye. )

[48] Because of the decreased computer time, it is feasible
to consider larger values of n. For large E and small oy, it
turns out that resonances are present with n as large as 23,
although the addition to the total diffusion coefficients is
only a few percent. Moreover, the method discussed in
section 5.1.2 to estimate the maximum |n| needed at each og
and \ was very effective, typically overestimating |Pyax| by
only 2 or 3. Thus the code takes only a little longer to
include, in effect, —o0. < n < co. Because the simplest
method behaves especially badly when n is too large
for resonance, Table 1 shows timing comparisons with
-20 < n <20

[49] As mentioned, these timings are highly dependent on
the parameters of the problem and on the numerical proce-
dure. However, it is clear that the analysis and techniques
presented here can greatly increase the efficiency and
practicality of the calculations and (for a given amount of
computer time) improve their accuracy.

9. Summary

[s0] For whistler mode waves, a detailed characterization
was given of ¥ = 1/ versus w, treating 8 as a parameter. ¥
was shown to have no internal minima and a single local
maximum whose location wpe, decreases monotonically
with 6, as does ¥(wpeak). For a given range w,¢ to wyc, this
determines the value of ¥, as well as the value of ¥ .,
when W(wpea) lies outside the frequency range. Several
estimates were given for ¥, when wyea lies inside the
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frequency range, including one based on the factorization of
¥ into increasing and decreasing functions and one based
on the high density approximation.

[51] The minimum and maximum values of the function
V(w) were also found, which leads to conditions on
(equation (19)) for the existence of solutions to the
resonance condition, ¥ = ¥. This and related constraints
on 6 ranges can be used to drastically reduce the amount
of integration over 0 required to evaluate quasi-linear
diffusion coefficients. A maximum value of |n| can be
determined for which there are any resonances at all. This
approach can also be extended to identify ranges of
latitude A\ which contain no resonances; this was carried
out in detail for the case n = 0.

[52] For variable and parameter ranges that do contribute
to the diffusion rates, with w, > 0 it was possible to both
enumerate the resonant frequencies and to isolate them, i.e.,
to find expressions that bracket and separate them so that
they can easily be found numerically. For cases with w, <0
that cannot be eliminated, a 10th order polynomial must be
solved for w(8) or else the integration performed over w,
which only requires solving a quadratic for sin* 8 as a
function of w. These techniques were used to evaluate
diffusion coefficients for relativistic electrons at L = 4.5
using realistic models of the wave parameters, as reported
by Horne et al. [2005]. )

(53] It should also be relatively straightforward to modify
this analysis for other types of plasma waves. In particular,
Z modes can resonate with energetic electrons [Horne and
Thorne, 1998] and have a refractive index that is quite
similar to that of the whistler mode [e.g., Carpenter et al.,
2003].

[54] A brief analysis was given of the typically increasing
relative strength of momentum diffusion, D,/Dq, o, With
decreasing density ratio w,./{),. In passing it was observed
that for w, > 0 (n < 0 for electrons), a particle with pitch
angle o has no resonances between w, and w,/sin® c. It is
tempting to speculate that this is somehow related to the gap
in chorus wave spectra frequently observed at £2./2 [e.g.,
Anderson and Maeda, 1977).

[55] Calculations using the full whistler dispersion rela-
tion were compared to results with the widely used high-
density approximation. In the cases chosen, this
approximation was found to be quite reliable for density
ratio W, /0. > 1 and qualitatively good at w,/Q, = 1
except at low pitch angle but failed badly at w,/Q2. = 0.5.
Finally, the computational effectiveness of the analysis was
demonstrated, decreasing the computer time significantly -
for calculations with —5 < n < 5 and even more so for
~20 < n < 20. Since the analysis is able to accurately
estimate the maximum |n| for which resonances occur, it is
possible to take, in effect, —o0 < n < co.

Appendix A: Proofs of Some Properties of the
Function ¥

[s6] For whistler mode waves, with P <0 and R > 0, ¥
can be written as

Ysin?0 -+ S/RL — o\/ Y2sin 8 + (D/RL) cos26,  (Al)
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where Y= (RL — PS)/2PRL and ¢ is the sign of DL. Taking
the (partial) derivative of ¥ with respect to any of the
parameters of (R, L, P) gives
' = Y'sin® 8+ (S/RL)
YY'sin* 0 4 (D/RLY(D/RLY c0529
\/Y2 sin®0 + (D/RL)* cos? 8

(A2)

This may be rewritten as

13
V= —% sin? 8(1 — cos ) —%cosesind)

sy sin? 0 .
+<ﬁ) [1— 3 (1 — cosd) — cosOBsindj,

(A3)

where

{o¥ sin?0,|D/RL| cos 6}
\[Yz sin' 0+ (D/RL)? cos? 8

{cosd, sin¢}=

and cos € sin ¢ > 0. With 6 and ¢ considered as independent
variables, 0 < 6, ¢ < =, it can be shown that the bracketed
term in (A3) is never less than 0. The form (A3) leads to
proofs of three assertions concerning ¥ made in the text, as
shown below.

Al. Proof That ¥ > =0

[57] Taking ¥’ = 0U/9M, it is readily checked that P and
R’ are negative and (S/RL) is positive. Therefore 0U/9M is
never negative, which proves ¥ > W* a5 claimed in
section 4.2.

A2. Proof That ¥ < ¢/P

[s8] Next, replace the leading “1” in the definitions of
R, L, and P with an additional parameter (3, so that the
exact U is ng.en by B = 1 and the high density
approximation U is given by B = 0. With ¥’ = 3W/58,
(A3) is unchanged but now P’ and R’ are positive. Therefore
U’ will be negative if (S/RL) is negative. Evaluating
(S/RLY gives a quadratic function f{3) divided by a
positive (squared) function. (A computer algebra program,
such as Mathematica [Wolfram, 2003], is useful here.)
Both the leading coefficient and the discriminant of f{3)
turn out to be negative so f is downward- facing, with no
real roots. Thus f is always negative, (S/RL) is negatlve
and 8U/08 < 0, which proves ¥ < ¥P as claimed in
section 4.1,

A3. Proof That (w},elﬂz)\ll Increases as w2, /2 Increases

[59] Finally, consider U= (wpe/Q Y. Let p denote 02 /wpe,
and define (R L, P) as (pR, pL, pP). Then the form of
URR, L, P) is exactly the same as that of U(R, L, P) in
(A1). Furthermore, since

P=p—(1+M)/?
and similarly for R and L, here p plays the same algebraic

role in ¥ as B did in ¥. The calculation of d¥/dp < 0
proceeds exactly like that of 8¥/98 < 0, with the result that
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V¥ increases as p decreases and wﬁJQﬁ increases, as claimed
in section 5.3.

Appendix B: Absence of Resonances Between w,,
and (2,

[60] Wlth wWpel€2e > 1/2, it is readily proved that there are
no resonances between w, = |n|Q./y and Q, = w,/sin® a.
Since ¥ < WP,

chos 0
v —£ 29,
M<W§e 7 <cos 8 (B1)

If Q, < Q. then 1/v° < sin* o/n?, and evaluating Vatw = (),
gives
1 — sin* o/n?

——— cos” 0 > cos? 0.

Vain >
] —sin‘ o

(B2)

If, on the other hand, 2, > Q, > w,, then cos? &> 1 — Inl/vy
and evaluating ¥ at w = {2, (recall ¥ < 0 for larger w) gives

y-1/y
y—|nl

In either case, Vi > Whax, SO there can be no solutions-
to V=10,

cos? 0 > cos? 0.

Vmin > (B3)
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